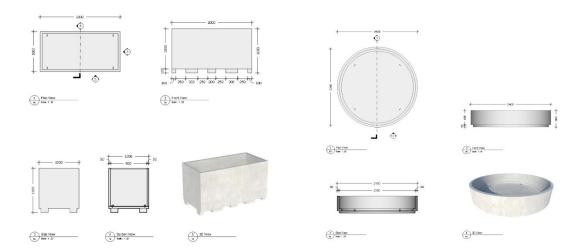
# Lifting Lug Testing - Factory Report (March 2021)



#### A. Objectives of the testing


- To test the strength of Satu Bumi's inbuilt lifting lug assemblies for both rectangle and cylindrical GRC planters to a minimum of 800 Kgs.
- To test the reliability of Satu Bumi's manufacturing process to ensure it provides consistent results in relation to the installation of the lifting lug assemblies.

# B. Testing approach

- Six GRC 800 kg planters were produced using Satu Bumi's standard manufacturing and quality control systems and processes. Three rectangle planters and three cylindrical planters.
- Each planter was filled with 1,600 Kgs of water making them 2,400 Kgs in total weight in effect three times their empty weight.
- Each of the planters was lifted with a crane and a lifting rig to approximately one and a half to two meters:
  - o One of each of the rectangle and cylindrical planters was left hanging on the crane for twenty-four hours.
  - $\circ \qquad \text{The other four planters were lifted for one hour each.}$
- Each planter was then reviewed to see if the lifting caused any structural damage to the planters.

#### C. Shop Drawings

Shop drawings for both the rectangle and the cylindrical test planters are included below.



#### D. Rectangle Planter Testing Statistics

- Planter dimensions 2000L x 1000W x 1000H
- Planter actual weight weight 802 kg

Theoretical weight estimate (just the rectangle planter) calculation: -

| Length     | Width  | Height | Lip   | Feet H | Wall T | Rectangle  Density Kg |        |
|------------|--------|--------|-------|--------|--------|-----------------------|--------|
| 2000       | 1000   | 1000   | 50    | 100    | 40     |                       |        |
| Part Name  | Height | Wide   | Thick | Sides  | m3     |                       |        |
| Front wall | 0,96   | 2,00   | 0,04  | 2      | 0,154  | 2000                  | 307,20 |
| Side Wall  | 0,96   | 0,96   | 0,04  | 2      | 0,074  | 2000                  | 147,46 |
| Base       | 1,96   | 0,96   | 0,04  | 1      | 0,075  | 2000                  | 150,53 |
| Lip 1      | 0,05   | 2,00   | 0,02  | 2      | 0,004  | 2000                  | 8,00   |
| Lip 2      | 0,05   | 0,90   | 0,02  | 2      | 0,002  | 2000                  | 3,60   |
| Feet       | 0,10   | 1,90   | 0,25  | 2      | 0,095  | 2000                  | 190,00 |
|            |        |        |       |        |        | Total                 | 806,78 |

Actual unfilled rectangle planter weight: -



# **Lifting Lug Testing – Factory Report (March 2021)**



Infill water statistics for the rectangle planter: -

• When filled with water to a height of 910 mm the theoretical weight estimate of the water was 1608 kg.

Weight estimate (water) calculation: -

| Water              |        |       |                      |        |      |         |  |  |
|--------------------|--------|-------|----------------------|--------|------|---------|--|--|
| Length Width Thick |        |       |                      |        |      |         |  |  |
| 1920               | 920    | 910   | Rectangle Container  |        |      |         |  |  |
|                    | Length | Width | Height m3 Density Kg |        |      |         |  |  |
|                    | 1,92   | 0,92  | 0,91                 | 1,6074 | 1000 | 1607,42 |  |  |

• Total weight estimate for the rectangle planter filled with water was 2,410 kg (802Kgs + 1,608 Kgs)

# E. Cylindrical Planter Testing Statistics

- Dimensions 2400D x 500H
- Product weight 802 kg

Theoretical weight estimate (just the cylinder planter) calculation: -

| Diameter      | Height | Lip      | Inner Lip | Wall Thick | Base Thick |       |         | Cylinder |  |
|---------------|--------|----------|-----------|------------|------------|-------|---------|----------|--|
| 2400          | 500    | 60       |           | 60         | 82         |       |         |          |  |
| Part Name     | Height | Radius 1 | Radius 2  | Thick      | Phi        | m3    | Density | Kg       |  |
| Cylinder Wall | 0,50   | 1,20     | 1,20      | 0,06       | 3,14       | 0,113 | 2000    | 226,08   |  |
| Cylinder Base |        | 1,12     | 1,12      | 0,08       | 3,14       | 0,288 | 2000    | 575,73   |  |
|               |        |          |           |            |            |       | Total   | 801,81   |  |

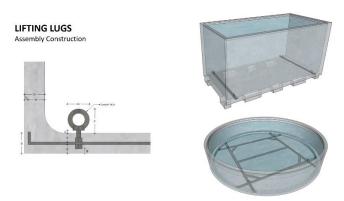
Actual unfilled cylinder planter weight



Infill water statistics for the cylinder planter: -

• When filled with water to a height of 365 mm the theoretical weight estimate of the water was 1620 kg.

Weight estimate (water) calculation based on the diameters of the upper part of the planter plus the lower part of the planter: -


| Water    |          |                                 |       |        |      |        |  |  |
|----------|----------|---------------------------------|-------|--------|------|--------|--|--|
| Diameter | Height   | Culinday Containay (Laway Boyt) |       |        |      |        |  |  |
| 2270     | 65       | Cylinder Container (Lower Part) |       |        |      |        |  |  |
| Phi      | Radius 1 | Radius 2 Height m3 Density Kg   |       |        |      |        |  |  |
| 3,14     | 1,135    | 1,135                           | 0,065 | 0,2629 | 1000 | 262,93 |  |  |

| Water    |          |                                 |        |        |         |         |  |  |
|----------|----------|---------------------------------|--------|--------|---------|---------|--|--|
| Diameter |          |                                 |        |        |         |         |  |  |
| 2400     | 300      | Cylinder Container (Upper Part) |        |        |         |         |  |  |
| Phi      | Radius 1 | Radius 2                        | Height | m3     | Density | Kg      |  |  |
| 3,14     | 1,2      | 1,2                             | 0,3    | 1,3565 | 1000    | 1356,48 |  |  |

Total weight estimate for the cylinder planter filled with water was = 802 + 263 + 1357 = 2422 kg



# F. Drawings of the Placement of the Lifting Assemblies



# G. Lifting lug assembly components

The lifting assembly is made up of M16 eye bolts and welded lengths of 8mm thick and 50 mm wide coated SS400 structural steel.





# H. Manufacturing Process

The lug assemblies are imbedded into the planters during the manufacturing process.

- a. Picture 1: shows the placement of the lifting assembly during manufacture.
- b. Picture 2: shows the assembly after initial covering with GRC material.
- c. Picture 3: shows the assembly after all GRC material has been added.
- d. Picture 4: shows the finished planter cured and ready for lift testing.



# Lifting Lug Testing – Factory Report (March 2021)



# I. Lift Testing

The lift testing was completed using a large crane and lifting jigs over a five-day period.

Cylindrical planter prior to, during and after lift testing.







Rectangle planter prior to and during lift testing







#### I. Test Results

After the lift testing, each of the planters was inspected and there was no indication of any significant structural damage caused to any of the planters because of the lift testing. All the planters were structurally sound and were considered to have passed the lift testing process by the factory manager who is a mechanical engineer.

#### Therefore: -

- The lifting lug assemblies for both the rectangle and cylindrical GRC planters are more than strong enough to lift an 800 Kg GRC planter with an additional load of 1,600 Kgs (2,400 Kgs in total).
- Satu Bumi's standard manufacturing and quality control processes provided a consistent result for all six planters.

#### J. Disclaimer

The contents and information provided within this document have been produced in good faith for the internal use of Satu Bumi (Australia) Pty. Ltd. and any person and/or entity to which Satu Bumi (Australia) Pty. Ltd. provides access. No authority is given by Satu Bumi (Australia) Pty. Ltd. for this document to be copied or distributed in any way other than that specifically authorised by Satu Bumi (Australia) Pty. Ltd. in writing or by email.